

Clean Room Decontamination

LESSONS FROM THE INTRODUCTION OF IONIZED HYDORGEN PEROXIDE

Andrew Daniel Quality Lead NWSSP Medicines Unit

Background

- USA 2001 Anthrax attacks
- Five dead and dozens of buildings contaminated
- IHP developed in response funded by the U.S. Defense Advanced Research Projects Agency (DARPA) in preparation for possible future attacks
- After the attacks, IHP began to establish itself in a more mainstream capacity with registration as a Hospital-Healthcare disinfectant with exceptional efficacy against viral pathogens beyond Anthrax

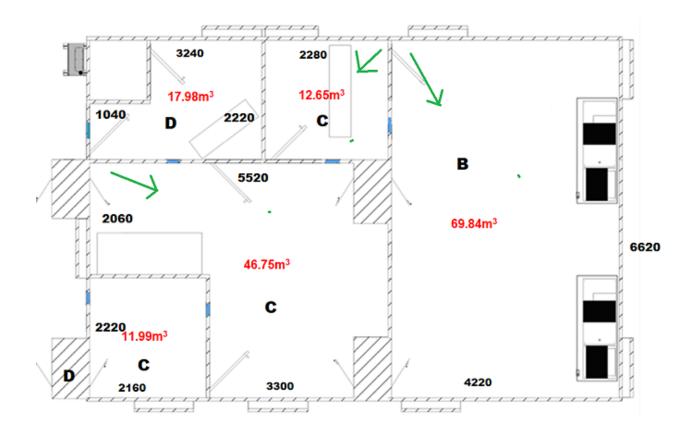
iHP - How does it work?

- Process begins with a low concentration hydrogen peroxide (less than 8%) solution
- Cold plasma technology used ionize the solution creating highly reactive hydroxyl radicals – potent oxidisers
- Ionized particle is about 2 microns in size and will move around the room like a gas and float into cracks and crevices much more effectively than a larger particle
- Almost immediate kill time
- Decomposes to water and oxygen

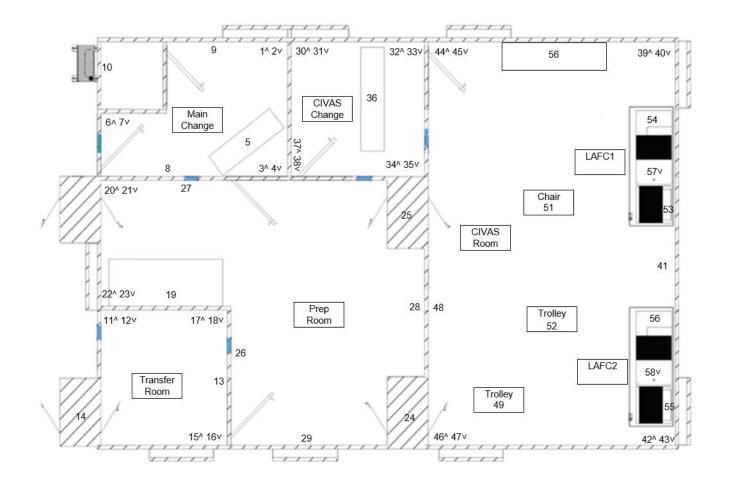
Why are we using iHP?

- Existing methods
 - Time consuming and operator dependent
 - Cleaning agents require specific contact time and leave residue
 - Corrosive
 - Health and Safety
 - Difficult to assess
 - Loss of production capacity
 - Expensive > £500k / year across Wales
- iHP
 - Can achieve 6-log reduction (99.9999%) and is quantifiable
 - Semi-automated
 - Non-corrosive breaks down into water and oxygen

IN 2019 THE WELSH GOVERNMENT SET THE TARGET DATE OF 2030 FOR NET ZERO FOR PUBLIC SERVICES


iHP validation

- Minimum three successful cycles
- Cycle determined by pre-programmed parameters
- Aeration study
- Enzyme indicators instant results
- Biological indicators 7+ days
- Routine monitoring
- Validation commenced across 3 different sites



iHP applicator locations

Enzyme and biological indicator positions

iHP set-up

11-07-2023 15:45:15 (S)

12-07-2023 16:03:50 (S)

Prep room

11-07-2023 16:09:19 (S)

Isolator roo

What have we learnt?

- Practical considerations:
 - Power supply
 - Fire alarms, HVAC
 - BiT solution volume will determine treatment area
 - Building factors size, layout, vent location
 - H202 detector positioning
 - H₂O₂ seepage
 - PPE FFP3 masks
 - Laboratory capacity BI incubation
 - El analysis

What have we learnt?

- Cycle considerations:
 - Aeration
 - Starting with 15% greater volume of BiT solution
 - Air supply factors
 - Temperature and humidity factors
 - Building factors modular vs bricks and mortar
 - Time factors ordering, planning, room preparation
 - Location of indicators and orientation

What next?

- Complete validation cycles
- Determine exact place in cleaning programme monthly?
- Investigate residual effect
- Business case for second SteraMist
- Validate other sites and train staff
- Source EU supply of BiT solution
- Annual revalidation